
Catching Packet Droppers and Modifiers in
Wireless Sensor Networks

Chuang Wang, Taiming Feng, Jinsook Kim, Guiling Wang, and Wensheng Zhang

Abstract

Packet dropping and modification are common attacks that can be launched by an adversary to disrupt communication
in wireless multi-hop sensor networks. Many schemes have been proposed to mitigate or tolerate such attacks but very
few can effectively and efficiently identify the intruders. To address this problem, we propose a simple yet effective scheme,
which can identify misbehaving forwarders that drop or modify packets. Extensive analysis and simulations have been
conducted to verify the effectiveness and efficiency of the scheme.

Index Terms

Packet Dropping, Packet Modification, Intrusion Detection, Wireless Sensor Networks.

�

• C. Wang, T. Feng, J. Kim and W. Zhang are with the Department of Computer Science, Iowa State University, Ames, IA, 50010.E-mail:
{cwang,taiming,dvorakjs,wzhang}@cs.iastate.edu

• G. Wang is with the Department of Computer Science, New Jersey Institute of Technology, Newark, NJ, 07102. E-mail: gwang@njit.edu

1

Catching Packet Droppers and Modifiers in
Wireless Sensor Networks

1 INTRODUCTION

In a wireless sensor network, sensor nodes monitor the envi-

ronment, detect events of interest, produce data and collaborate

in forwarding the data towards a sink, which could be a

gateway, base station, storage node, or querying user. Because

of the ease of deployment, the low cost of sensor nodes

and the capability of self-organization, a sensor network is

often deployed in an unattended and hostile environment to

perform the monitoring and data collection tasks. When it is

deployed in such an environment, it lacks physical protection

and is subject to node compromise. After compromising one

or multiple sensor nodes, an adversary may launch various

attacks [1] to disrupt the in-network communication. Among

these attacks, two common ones are dropping packets and

modifying packets, i.e., compromised nodes drop or modify

the packets that they are supposed to forward.

To deal with packet droppers, a widely adopted counter-

measure is multi-path forwarding [2], [3], [4], [5], in which

each packet is forwarded along multiple redundant paths and

hence packet dropping in some but not all of these paths

can be tolerated. To deal with packet modifiers, most of

existing countermeasures [6], [7], [8], [9] aim to filter modified

messages en-route within a certain number of hops. These

countermeasures can tolerate or mitigate the packet dropping

and modification attacks, but the intruders are still there and

can continue attacking the network without being caught.

To locate and identify packet droppers and modifiers, it

has been proposed that nodes continuously monitor the for-

warding behaviors of their neighbors [10], [11], [12], [13],

[14], [15] to determine if their neighbors are misbehaving, and

the approach can be extended by using the reputation-based

mechanisms to allow nodes to infer whether a non-neighbor

node is trustable [16], [17], [18], [19]. This methodology may

be subject to high energy cost incurred by the promiscuous

operating mode of wireless interface; moreover, the reputation

mechanisms have to be exercised with cautions to avoid or

mitigate bad mouth attacks and others. Recently, Ye et al.
proposed a probabilistic nested marking (PNM) scheme [20].

But with the PNM scheme, modified packets should not be

filtered out en-route because they should be used as evidence

to infer packet modifiers; hence, it cannot be used together

with existing packet filtering schemes.

In this paper, we propose a simple yet effective scheme to

catch both packet droppers and modifiers. In this scheme, a

routing tree rooted at the sink is first established. When sensor

data is transmitted along the tree structure towards the sink,

each packet sender or forwarder adds a small number of extra

bits, which is called packet marks, to the packet. The format

of the small packet marks is deliberately designed such that

the sink can obtain very useful information from the marks.

Specifically, based on the packet marks, the sink can figure out

the dropping ratio associated with every sensor node, and then

runs our proposed node categorization algorithm to identify

nodes that are droppers/modifiers for sure or are suspicious

droppers/modifiers. As the tree structure dynamically changes

every time interval, behaviors of sensor nodes can be observed

in a large variety of scenarios. As the information of node

behaviors has been accumulated, the sink periodically runs our

proposed heuristic ranking algorithms to identify most likely

bad nodes from suspiciously bad nodes. This way, most of the

bad nodes can be gradually identified with small false positive.

Our proposed scheme has the following features: (i) being

effective in identifying both packet droppers and modifiers,

(ii) low communication and energy overheads, and (iii) being

compatible with existing false packet filtering schemes; that

is, it can be deployed together with the false packet filtering

schemes, and therefore it can not only identify intruders but

also filter modified packets immediately after the modification

is detected. Extensive simulation on ns2 simulator has been

conducted to verify the effectiveness and efficiency of the

proposed scheme in various scenarios.

In the rest of the paper, Section 2 defines the system model.

Section 3 describes the proposed scheme and section 4 reports

the evaluation results. Section 5 discusses the related work, and

Section 6 concludes the paper.

2 SYSTEM MODEL

2.1 Network Assumptions

We consider a typical deployment of sensor networks, where

a large number of sensor nodes are randomly deployed in a

two dimensional area. Each sensor node generates sensory

data periodically and all these nodes collaborate to forward

packets containing the data towards a sink. The sink is located

within the network. We assume all sensor nodes and the

sink are loosely time synchronized [21], which is required

by many applications. Attack-resilient time synchronization

schemes, which have been widely investigated in wireless

sensor networks [22], [23], can be employed. The sink is aware

of the network topology, which can be achieved by requiring

nodes to report their neighboring nodes right after deployment.

2.2 Security Assumptions and Attack Model

We assume the network sink is trustworthy and free of com-

promise, and the adversary cannot successfully compromise

regular sensor nodes during the short topology establishment

phase after the network is deployed. This assumption has been

widely made in existing work [8], [24]. After then, the regular

2

sensor nodes can be compromised. Compromised nodes may

or may not collude with each other. A compromised node can

launch the following two attacks:

• Packet dropping: a compromised node drops all or some

of the packets that it is supposed to forward. It may

also drop the data generated by itself for some malicious

purpose such as framing innocent nodes.

• Packet modification: a compromised node modifies all or

some of the packets that it is supposed to forward. It

may also modify the data it generates to protect itself

from being identified or to accuse other nodes.

3 THE PROPOSED SCHEME

Our proposed scheme consists of a system initialization phase

and several equal-duration rounds of intruder identification

phases.

• In the initialization phase, sensor nodes form a topology

which is a directed acyclic graph (DAG). A routing tree is

extracted from the DAG. Data reports follow the routing

tree structure.

• In each round, data is transferred through the routing

tree to the sink. Each packet sender/forwarder adds a

small number of extra bits to the packet and also encrypts

the packet. When one round finishes, based on the extra

bits carried in the received packets, the sink runs a node

categorization algorithm to identify nodes that must be

bad (i.e., packet droppers or modifiers) and nodes that

are suspiciously bad (i.e., suspected to be packet droppers

and modifiers).

• The routing tree is reshaped every round. As a certain

number of rounds have passed, the sink will have col-

lected information about node behaviors in different rout-

ing topologies. The information includes which nodes are

bad for sure, which nodes are suspiciously bad, and the

nodes’ topological relationship. To further identify bad

nodes from the potentially large number of suspiciously

bad nodes, the sink runs heuristic ranking algorithms.

In the following sub-sections, we first present the algorithm

for DAG establishment and packet transmission, which is fol-

lowed by our proposed categorization algorithm, tree structure

reshaping algorithm, and heuristic ranking algorithms. To ease

the presentation, we first concentrate on packet droppers and

assume no node collusion. After that, we present how to extend

the presented scheme to handle node collusion and detect

packet modifiers, respectively.

3.1 DAG Establishment and Packet Transmission
All sensor nodes form a DAG and extracts a routing tree from

the DAG. The sink knows the DAG and the routing tree, and

shares a unique key with each node. When a node wants to

send out a packet, it attaches to the packet a sequence number,

encrypts the packet only with the key shared with the sink, and

then forwards the packet to its parent on the routing tree. When

an innocent intermediate node receives a packet, it attaches a

few bits to the packet to mark the forwarding path of the

packet, encrypts the packet, and then forwards the packet to

its parent. On the contrary, a misbehaving intermediate node

may drop a packet it receives. On receiving a packet, the

sink decrypts it, and thus finds out the original sender and

the packet sequence number. The sink tracks the sequence

numbers of received packets for every node, and for every

certain time interval, which we call a round, it calculates the

packet dropping ratio for every node. Based on the dropping

ratio and the knowledge of the topology, the sink identifies

packet droppers based on rules we derive. In detail, the scheme

includes the following components, which are elaborated in the

following.

3.1.1 System Initialization
The purpose of system initialization is to set up secret pair-

wise keys between the sink and every regular sensor node, and

to establish the DAG and the routing tree to facilitate packet

forwarding from every sensor node to the sink.

3.1.1.1 Preloading Keys and Other System Parameters:

Each sensor node u is preloaded the following information:

• Ku: a secret key exclusively shared between the node

and the sink.

• Lr: the duration of a round.

• Np: the maximum number of parent nodes that each node

records during the DAG establishment procedure.

• Ns: the maximum packet sequence number. For each

sensor node, its first packet has sequence number 0, the

N th
s packet is numbered Ns − 1, the (Ns + 1)th packet

is numbered 0, and so on and so forth.

3.1.1.2 Topology Establishment: After deployment, the

sink broadcasts to its one-hop neighbors a 2-tuple 〈0, 0〉. In

the 2-tuple, the first field is the ID of the sender (We assume

the ID of sink is 0.) and the second field is its distance in

hop from the sender to the sink. Each of the remaining nodes,

assuming its ID is u, acts as follows:

(i) On receiving the first 2-tuple 〈v, dv〉, node u sets its own

distance to the sink as du = dv + 1.

(ii) Node u records each node w (including node v) as its

parent on the DAG if it has received 〈w, dw〉 where dw =
dv . That is, node u records as its parents on the DAG the

nodes whose distance (in hops) to the sink is the same and

the distance is one hop shorter than its own. If the number

of such parents is greater than Np, only Np parents are

recorded while others are discarded. The actual number

of parents it has recorded is denoted by np,u.

(iii) After a certain time interval1, node u broadcasts 2-

tuple 〈u, du〉 to let its downstream one-hop neighbors to

continue the process of DAG establishment. Then, among

the recorded parents on the DAG, node u randomly picks

one (whose ID is denoted as Pu) as its parent on the

routing tree. Node u also picks a random number (which

is denoted as Ru) between 0 and Np − 1. As to be

elaborated later, random number Ru is used as a short ID

of node u to be attached to each packet node u forwards,

so that the sink can trace out the forwarding path. Finally,

1. The length of the interval is a predefined system parameter that is large
enough for each node to receive an enough number of broadcasts from the
nodes closer to the sink.

3

node u sends Pu, Ru and all recorded parents on the DAG

to the sink.

After the above procedure completes, a DAG and a routing

tree rooted at the sink is established. The routing tree is used

by the nodes to forward sensory data until the tree changes

later; when the tree needs to be changed, the new structure is

still extracted from the DAG.

The lifetime of the network is divided into rounds, and each

round has a time length of Lr. After the sink has received

the parent lists from all sensor nodes, it sends out a message

to announce the start of the first round, and the message is

forwarded hop by hop to all nodes in the network. Note that,

each sensor node sends and forwards data via a routing tree

which is implicitly agreed with the sink in each round, and

the routing tree changes in each round via our tree reshaping

algorithm presented in Sec. 3.3.

3.1.2 Packet Sending and Forwarding
Each node maintains a counter Cp which keeps track of the

number of packets that it has sent so far. When a sensor node

u has a data item D to report, it composes and sends the

following packet to its parent node Pu:

〈Pu, {Ru, u, Cp MOD Ns, D, padu,0}Ku
, padu,1〉,

where Cp MOD Ns is the sequence number of the packet.

Ru (0 ≤ Ru ≤ Np − 1) is a random number picked by node

u during the system initialization phase, and Ru is attached

to the packet to enable the sink to find out the path along

which the packet is forwarded. {X}Y represents the result of

encrypting X using key Y .

Paddings padu,0 and padu,1 are added to make all packets

equal in length, such that forwarding nodes cannot tell packet

sources based on packet length. Meanwhile, the sink can

still decrypt the packet to find out the actual content. To

satisfy these two objectives simultaneously, the paddings are

constructed as follows:

• For a packet sent by a node which is h hops away from

the sink, the length of padu,1 is log(Np) ∗ (h − 1) bits.

As to be described later, when a packet is forwarded

for one hop, log(Np) bits information will be added and

meanwhile, log(Np) bits will be chopped off.

• Let the maximum size of a packet be Lp bits, a node

ID be Lid bits and data D be LD bits. padu,0 should be

Lp − Lid ∗ 2− log(Np) ∗ h− log(Ns)− LD bits, where

Lid ∗ 2 bits are for Pu and u fields in the packet, field

Ru is log(Np) bits long, field padu,1 is log(Np)∗ (h−1)
bits long, and Cp MOD Ns is log(Ns) bits long. Setting

padu,0 to this value ensures that all packets in the network

have the same length Lp.

When a sensor node v receives packet 〈v,m〉, it composes and

forwards the following packet to its parent node Pv:

〈Pv, {Rv,m
′}Kv 〉,

where m′ is obtained by trimming the rightmost log(Np) bits

off m. Meanwhile, Rv , which has logNp bits, is added to the

front of m′. Hence, the size of the packet keeps unchanged.

Suppose on a routing tree, node u is the parent of node

v and v is a parent of node w. When u receives a packet

from v, it cannot differentiate whether the packet is originally

sent by v or w unless nodes u and v collude. Hence, the

above packet sending and forwarding scheme results in the

difficulty to launch selective dropping, which is leveraged in

locating packet droppers. We take special consideration for the

collusion scenarios, which are to be elaborated later.

3.1.3 Packet Receiving at the Sink
We use node 0 to denote the sink. When the sink receives a

packet 〈0,m′〉, it conducts the following steps:

(i) Two temporary variables u and m are introduced. Let

u = 0 and m = m′ initially.

(ii) The sink attempts to find out a child of node u, denoted

as v, such that dec(Kv,m) results in a string starting with

Rv , where dec(Kv,m) means the result of decrypting m
with key Kv .

(iii) If the attempt fails for all children nodes of node u, the

packet is identified as have been modified and thus should

be dropped.

(iv) If the attempt succeeds, it indicates that the packet was

forwarded from node v to node u. Now, there are two

cases:

– If dec(Kv,m) starts with 〈Rv, v〉, it indicates that

node v is the original sender of the packet. The

sequence number of the packet is recorded for further

calculation and the receipt procedure completes.

– Otherwise, it indicates that node v is an intermediate

forwarder of the packet. Then, u is updated to

be v, m is updated to be the string obtained by

trimming Rv from the leftmost. Then, steps (ii)-(iv)

are repeated.

The process of packet receipt at the sink can be formalized

as Algorithm 1

Algorithm 1 Packet Receipt at the Sink

1: Input: packet 〈0,m〉.
2: u = 0, m′ = m;

3: hasSuccAttemp = false;

4: for each child node v of node u do
5: P=dec(Kv,m

′);
6: if decryption fails then
7: continue;

8: else
9: hasSuccAttemp = true;

10: if P starts with 〈Rv, v〉 then
11: record the sequence number; /∗ v is the sender ∗/
12: break;

13: else
14: trim Rv from P and get m′; /∗v is a forwarder ∗/
15: u ← v, hasSuccAttemp = false; go to line 4;

16: if hasSuccAttemp = false then
17: drop this packet;

3.1.4 An Example
Fig 1 shows an example sensor network with 7 nodes, nodes

0−6. Node ID is represented by 3 bits. Suppose the maximum

4

�

� �

� ��

�

�� � ��� �� � ��� ��������

�� � ��� �� � ��� ��������

	�

uP
uR u p sC MOD N D

,1uPad

�� � ��� �� � ��� ��������	�

��� ��

	
���
��

� � �� � ��� ��������� 	�

��� �� � � �� � ��� ��������� 	�

��
�
����������

��������������������������

�����������
 ������������

��������������������������

�������	��!��"��������������

��� �� � � �� � ��� ��������� 	�

�����������
 ������������

��#

��#

��#

��#

��#

��#

$
!����
��

,0uPad

Fig. 1. Example of Packet Sending, Forwarding

packet sequence number Ns is 16 and 4 bits are used to repre-

sent the counter Cp. Np, the maximum number of parents that

each sensor node should record during the tree establishment,

is 4. We assume that the length of sensory data LD is 8 bits.

In this figure, we illustrate the following procedure: node 5,

which is 2 hops away from the sink, generates sensory data

96; the data is sent to the sink node 0. Assume data from

node 5 follows path 5->2->0 and Cp = 3. Node 5 constructs

packet

< Pu, {Ru, u, Cp MOD Ns, D, padu,0}Ku , padu,1 >,

The plain-text of the packet is shown in the figure as P1.

Specifically, Pu = 2(010), Ru = 1(01), u = 5(101), Cp =
3(0011), and D = 96(01100000). The length of the paddings

are calculated as follows. Assume that the maximum packet

size Lp is 24 bits. The length of pad5,1 should be logNp ∗
(h− 1) bits, which is 2 bits. The length of pad5,0 should be

Lp −Lid ∗ 2− logNp ∗h− logNs −LD, that is, 24− 3 ∗ 2−
2∗2− 4− 8 = 2 bits. Based on P1, node 5 uses its secret key

K5 to encrypt part of P1, {R5, 5, Cp MOD Ns, D, pad5,0}.

The cipher-text is represented by C1 and the encrypted packet

P2 is constructed accordingly. P2 is sent to node 2.

When node 2 receives packet P2, it first chops off the

rightmost logNp bits, which are 2 bits of the paddings. Next,

node 2 constructs packet P3 by adding its parent ID and the

random number R2 to the front of cipher-text C1. Note that

the packet length is kept the same since the rightmost 2 bits are

chopped off, and a random number R2 with 2 bits is added.

Next, node 2 uses its secret key K2 to encrypt information

{R2, C1} in packet P3 and generates packet P4. P4 is then

sent to the sink.

After the sink receives the packet P4 from its children, the

sink tries to figure out the sender. The sink tries to decrypt

the cipher-text C2 by using its children’s secret keys one by

one. The sink finds that the packet is from node 2 after C2 is

decrypted by using K2. The sink also recovers the decrypted

C2 which does not start with {R2, 2}. (Note that, the sink

and each sensor node are synchronized and they follow an

implicit tree reshaping algorithm. The random number R2 is

also known by the sink.) The sink concludes that node 2 is an

intermediate node. It continues this process and finds out the

source of the data is node 5.

3.2 Node Categorization Algorithm

In every round, for each sensor node u, the sink keeps track of

the number of packets sent from u, the sequence numbers of

these packets, and the number of flips in the sequence numbers

of these packets, (i.e., the sequence number changes from a

large number such as Ns − 1 to a small number such as 0).

In the end of each round, the sink calculates the dropping

ratio for each node u. Suppose nu,max is the most recently

seen sequence number, nu,flip is the number of sequence

number flips, and nu,rcv is the number of received packets.

The dropping ratio in this round is calculated as follows:

du =
nu,flip ∗Ns + nu,max + 1 − nu,rcv

nu,flip ∗Ns + nu,max + 1
.

Based on the dropping ratio of every sensor node and the

tree topology, the sink identifies the nodes that are droppers

for sure and that are possibly droppers. For this purpose, a

threshold θ is first introduced. We assume that if a node’s

packets are not intentionally dropped by forwarding nodes, the

dropping ratio of this node should be lower than θ. Note that θ
should be greater than 0, taking into account droppings caused

by incidental reasons such as collisions. The first step of the

identification is to mark each node with “+” if its dropping

ratio is lower than θ, or with “-” otherwise. After then, for

each path from a leaf node to the sink, the nodes’ mark pattern

in this path can be decomposed into any combination of the

following basic patterns, which are also illustrated by Fig. 2:

• +{+}: a node and its parent node are marked as “+”.

• +−{−}∗: a node is marked as “+”, but its one or more

continuous immediate upstream nodes are marked as “-”.

• −{+}: a node is marked as “-”, but its parent node is

marked as “+”.

• −{−}: a node and its parent node are marked as “-”.

%

&

�

	 $

' (

)�*

+

+

%

&

�

	 $

' (

)�*

,

,

+

,

%

&

�

	 $

' (

)�*

,

+

%

&

�

	 $

' (

)�*

,

,

Fig. 2. Node Status Pattern

For each of the above cases, we can infer whether a node

(i) has dropped packets (called bad for sure), (ii) is suspected

to have dropped packets (called suspiciously bad), (iii) has not

been found to drop packets (called temporarily good), or (iv)

must have not dropped packets (called good for sure):
Case 1: +{+}. The node and its parent node do not drop

packets along the involved path, but it is unknown whether

they drop packets on other forwarding paths. Therefore, the

sink infers that these nodes are temporarily good. For example,

5

in Fig. 2(a), node C and E are marked “+” and are regarded as

temporarily good. A special case is, if a leaf node is marked

as “+”, it is safe to infer it is good since it cannot drop other’s

packets.

Case 2: +−{−}∗. In the case, all nodes marked as “-” must

be bad for sure. To show the correctness of this rule, we prove

it by contradiction. Without loss of generality, we examine the

scenario illustrated in Fig 2(b), where node C is marked as “+”,

and nodes E, F and G are marked as “-”. If our conclusion is

incorrect and node E is good, E must not drop its own packets.

Since E is marked as “-”, there must be some upstream nodes

of E dropping E’s packets. Note that the bad upstream nodes

are at least one hop above E, i.e., at least two hops above C.

It is impossible for them to differentiate packets from E and

C, so they cannot selectively drop the packets from E while

forwarding the packets from C. Even if C and the bad upstream

node collude, they cannot achieve this. This is because every

packet from C must go through and be encrypted by E, and

therefore the bad upstream node cannot tell the source of the

packet to perform selective dropping. Note that, if a packet is

forwarded to the bad upstream node without going through E,

the packet cannot be correctly decrypted by the sink and thus

will be dropped. Therefore, E must be bad. Similarly, we can

also conclude that F and G are also bad.

Case 3: −{+}. In this case, either the node marked as “-” or

its parent marked as “+” must be bad. But it cannot be further

inferred whether (i) only the node with “-” is bad, (ii) only the

node with “+” is bad, or (iii) both nodes are bad. Therefore,

it is concluded that both nodes are suspiciously bad. The

correctness of this rule can also be proved by contradiction.

Without loss of generality, let us consider the scenario shown

in Fig. 2(c), where node C is marked as “-”, and node E is

marked as “+”. Now suppose both C and E are good, and

hence there must exist at least one upstream node of E which

is a bad node that drops the packets sent by C. However, it is

impossible to find such an upstream node since nodes F and

G, and other upstream nodes cannot selectively drop packets

from node C while forwarding packets from node E. Hence,

either node C is bad or node E is bad in this case.

Case 4: −{−}. In this case, every node marked with “-

” could be bad or good. Conservatively, they have to be

considered as suspiciously bad. Specifically, suppose v is the

highest-level node that is marked as “-”, and u is its parent

node. If u is the sink, v must be bad for sure; otherwise, both

u and v are suspiciously bad. On the other hand, suppose v is

a child of u and they are both marked as “-”. If the dropping

ratio of u is larger than that of v by at least θ (i.e., dv < du
and du−dv > θ, recalling that θ is a threshold used to tolerate

incidental droppings), node u is bad for sure. Otherwise, both

u and v are suspiciously bad.

Based on the above rules, we develop a node categorization

algorithm to find nodes that are bad for sure or suspiciously
bad. The formal algorithm is presented in Algorithm 2.

3.3 Tree Reshaping and Ranking Algorithms

The tree used to forward data is dynamically changed from

round to round, which enables the sink to observe the behavior

Algorithm 2 Tree-Based Node Categorization Algorithm

1: Input: Tree T , with each node u marked by “+” or “-”,

and its dropping ratio du.

2: for each leaf node u in T do
3: v ← u’s parent;

4: while u is not the Sink do
5: if u.mark = “+” then
6: if v.mark = “-” then
7: b ← v;

8: repeat
9: e ← v;

10: v ← v’s parents node;

11: until v.mark = “+” or v is Sink

12: Set nodes from b to e as bad for sure;
13: else
14: if v is Sink then
15: Set u as bad for sure;
16: if v.mark = “+” then
17: if v is not bad for sure then
18: Set u and v as suspiciously bad;

19: else
20: if dv − du > θ then
21: Set v as bad for sure;
22: else if du − dv > θ then
23: Set u and v as suspiciously bad;

24: u ← v, v ← v’s parents node

of every sensor node in a large variety of routing topologies.

For each of these scenarios, node categorization algorithm

is applied to identify sensor nodes that are bad for sure or

suspiciously bad. After multiple rounds, sink further identifies

bad nodes from those that are suspiciously bad by applying

several proposed heuristic methods.

3.3.1 Tree Reshaping

The tree used for forwarding data from sensor nodes to the sink

is dynamically changed from round to round. In other words,

each sensor node may have a different parent node from round

to round. To let the sink and the nodes have a consistent view

of their parent nodes, the tree is reshaped as follows. Suppose

each sensor node u is preloaded with a hash function h(.)
and a secret number Ku which is exclusively shared with the

sink. At the beginning of each round i (i = 1, 2, · · ·), node u
picks the [hi(Ku) MOD np,u]

th parent node as its parent node

for this round, where hi(Ku) = h(hi−1(Ku)) and np,u is the

number of candidate parent nodes that node u recorded during

the tree establishment phase. Recall that node u’s candidate

parent nodes are those which are one hop closer to the sink

and within node u’s communication range. Therefore, if node

u choose node w as its parent in a round, node w will not select

node u as its parent, and the routing loop will not occur. Note

that, how the parents are selected is predetermined by both

the preloaded secret Ku and the list of parents recorded in the

tree establishment phase. The selection is implicitly agreed

between each node and the sink. Therefore, a misbehaving

node cannot arbitrarily select its parent in favor of its attacks.

6

3.3.2 Identifying Most Likely Bad Nodes from Suspi-
ciously Bad Nodes

We rank the suspiciously bad nodes based on their probabili-

ties of being bad, and identify part of them as most likely bad

nodes. Specifically, after a round ends, the sink calculates the

dropping ratio of each node, and runs the node categorization

algorithm specified as Algorithm 2 to identify nodes that are

bad for sure or suspiciously bad. Since the number of sus-

piciously bad nodes are potentially large, we propose how to

identify most likely bad nodes from the suspiciously bad nodes

as follows. By examining the rules in Case 3 and Case 4 for

identifying suspiciously bad nodes, we can observe that in each

of these cases, there are two nodes having the same probability

to be bad and at least one of them must be bad. We call these

two nodes as a suspicious pair. For each round i, all identified

suspicious pairs are recorded in a suspicious set denoted

as Si = {〈uj , vj〉|〈uj , vj〉 is a suspicious pair and 〈uj , vj〉 =
〈vj , uj〉}. Therefore, after n rounds of detection, we can obtain

a series of suspicious sets: S1, S2, · · · , Sn.

We define S as the set of most likely bad nodes identified

from S1, S2, · · · , Sn, if S has the following properties:

• Coverage. ∀〈u, v〉 ∈ Si (i = 1, · · · , n), it must hold

that either u ∈ S or v ∈ S. That is, for any identified

suspicious pair, at least one of the nodes in the pair must

be in the set of most likely bad nodes.

• Most-likeliness. ∀〈u, v〉 ∈ Si (i = 1, · · · , n), if u ∈ S
but v 	∈ S, then u must have higher probability to be bad

than v based on n rounds of observation.

• Minimality. The size of S should be as small as possible

in order to minimize the probability of mis-accusing

innocent nodes.

Among the above three conditions, the first one and the third

one can be relatively easily implemented and verified. For the

second condition, we propose several heuristics to find nodes

with most-likeliness.
Global Ranking-Based (GR) Method

The GR method is based on the heuristic that, the more

times a node is identified as suspiciously bad, the more likely

it is a bad node. With this method, each suspicious node u
is associated with an accused account which keeps track of

the times that the node has been identified as suspiciously

bad nodes. To find out the most likely set of suspicious nodes

after n rounds of detection, as described in Algorithm 3, all

suspicious nodes are ranked based on the descending order

of the values of their accused accounts. The node with the

highest value is chosen as a most likely bad node and all the

pairs that contain this node are removed from S1, · · · , Sn,

resulting in new sets. The process continues on the new sets

until all suspicious pairs have been removed. The GR method

is formally presented in Algorithm 3.

Stepwise Ranking-Based (SR) method
It can be anticipated that the GR method will falsely accuse

innocent nodes that have frequently been parents or children

of bad nodes: as parents or children of bad nodes, according

to previously-described rules in Cases 3 and 4, the innocents

can often be classified as suspiciously bad nodes. To reduce

false accusation, we propose the SR method. With the SR

Algorithm 3 The Global Ranking-Based Approach

1: Sort all suspicious nodes into queue Q according to the

descending order of their accused account values

2: S ← ∅
3: while

⋃n
i=1 Si 	= ∅ do

4: u ← deque(Q)
5: S ← S ∧ {u}
6: remove all 〈u, ∗〉 from

⋃n
i=1 Si

method, the node with the highest accused account value is still

identified as a most likely bad node. However, once a bad node

u is identified, for any other node v that has been suspected

together with node u, the value of node v’s accused account

is reduced by the times that u and v have been suspected

together. This adjustment is motivated by the possibility that

v has been framed by node u. After the adjustment, the node

that has the highest value of accused account among the rest

nodes is identified as the next mostly like bad node, which

is followed by the adjustment of the accused account values

for the nodes that have been suspected together with the

node. Note that, similar to the GR method, after a node u
is identified as bad, all suspicious pairs with format 〈u, ∗〉 are

removed from S1, · · · , Sn. The above process continues until

all suspicious pairs have been removed. The SR method is

formally presented in Algorithm 4.

Algorithm 4 The Stepwise Ranking-Based Approach

1: S ← ∅
2: while

⋃n
i=1 Si 	= ∅ do

3: u ← the node has the maximum times of presence in

S1, · · · , Sn
4: S ← S ∧ {u}
5: remove all 〈u, ∗〉 from

⋃n
i=1 Si

Hybrid Ranking-Based (HR) Method
The GR method can detect most bad nodes with some false

accusations while the SR method has fewer false accusations

but may not detect as many bad nodes as the GR method. To

strike a balance, we further propose the HR method, which

is formally presented in Algorithm 5. According to HR, the

node with the highest accused account value is still first chosen

as most likely bad node. After a most likely bad node has

been chosen, the one with the highest accused account value

among the rest is chosen only if the node has not always been

accused together with the bad nodes that have been identified

already. Thus, the accusation account value is considered as

an important criterion in identification, as in the GR method;

meanwhile, the possibility that an innocent node being framed

by bad nodes is also considered by not choosing the nodes who

have always being suspected together with already-identified

bad nodes, as in the SR method. The HR method is formally

presented in Algorithm 5.

3.4 Handling Collusion
Because of the deliberate hop by hop packet padding and

encryption, the packets are not distinguishable to the upstream

7

Algorithm 5 The Hybrid Ranking-Based Approach

1: Sort all suspicious nodes into queue Q according to the

descending order of their accused account values

2: S ← ∅
3: while

⋃n
i=1 Si 	= ∅ do

4: u ← deque(Q)
5: if there exists 〈u, ∗〉 ∈ ⋃n

i=1 Si then
6: S ← S ∧ {u}
7: remove all 〈u, ∗〉 from

⋃n
i=1 Si

compromised nodes as long as they have been forwarded by an

innocent node. The capability of launching collusion attacks is

thus limited by the scheme. However, compromised nodes that

are located close with each other may collude to render the

sink to accuse some innocent nodes. We discuss the possible

collusion scenarios in this section and propose strategies to

mitigate the effects of collusion.

As the four cases described in section 3.2, the attackers do

not gain any benefit if the collusion triggers the scenarios of

Case 1 and Case 2. However, the attackers may accuse honest

nodes if the collusion triggers the scenarios of Case 3 and

Case 4. By exploiting the rules used by the node categorization

algorithm and rank algorithm, there are two possible collusion

strategies to make the sink accuse innocent nodes. We use

Fig. 3 as a general example to discuss the collusion scenarios.

'

($

�

Fig. 3. Collusion Scenarios

• Horizontal Collusion: if nodes B, C and D are com-

promised and collude, they will drop all or some of the

packets of their own and their downstream nodes. Conse-

quently, according to the rules in Case 3, 〈A,B〉, 〈A,C〉
and 〈A,D〉 are all identified as pairs of suspiciously bad

nodes. Since A has been suspected for more times than

B, C and D, it is likely that A is falsely identified as

bad node.

• Vertical Collusion: if nodes B and E are compromised

and collude, B may drop some packets of itself and its

downstream nodes, and then E further drops packets from

its downstream nodes including B and B’s downstream

nodes. Note that, E cannot differentiate the packets

forwarding/generating by B since they are encrypted by

node A. Consequently, the dropping rates for B and

its downstream nodes are higher than that for node

A. According to Case 4, 〈E,A〉 and 〈A,B〉 are both

identified as pairs of suspiciously bad nodes. Since A
has been suspected for more times than B and E, it is

likely to be identified as a bad node.

To defeat collusion that may lead to false accusation, our

scheme is extended as follows:

• The concept of suspicious pair is extended to suspicious
tuple which is a non-ordered sequence of suspicious

nodes. Note that, a suspicious pair is a special case of

suspicious tuple, i.e., suspicious 2-tuple.

• A new rule is introduced: for each round i, if

there exists multiple suspicious tuples of which

each contains a certain node u, 〈u, v1,1, · · · ,

v1,m1〉, · · · , 〈u, vn,1, · · · , vn,mn〉, all these tuples should

be combined into a single tuple without duplication. For

example, if the original tuples are 〈u, v1〉, 〈u, v2, v3〉 and

〈u, v3〉, these tuples will be replaced with 〈u, v1, v2, v3〉,
where each of the four nodes is suspected for only once.

As to be shown in our simulation results, the above enhance-

ment can deal with collusion at the cost of slightly degraded

detection rate.

3.5 An Extension for Identifying Packet Modifiers
If a compromised node modifies the packets that it is supposed

to forward, the node can be detected with the afore-described

scheme. This is because, modified packets will be detected

by the sink and thus be dropped (detailed in step(iii) of the

packet receiving procedure at sink). This is equivalent to the

case that the packets are dropped by the modifier; hence,

the packet modifier can be identified as a packet dropper.

However, detecting modifiers in this way is not ideal because

modified packets cannot be identified earlier by en-route nodes

to save energy and bandwidth consumption. To enable en-route

detection of modifications, the afore-described procedures for

packet sending and forwarding can be slightly modified as

follows.

When a node u has a data item D to report, it can obtain

endorsement message authentication codes (MACs) from its

neighbors, which are denoted as MAC(D), following existing

en-route filtering schemes such as the statistical en-route

filtering scheme (SEF) [6] and the interleaved hop-by-hop

authentication scheme [7]. The source node u generates and

sends the following packet to its parent node Pu:

〈Pu, D,MAC(D), {Ru, u, Cp MOD Ns, padu,0}Ku , padu,1〉.
When packet 〈v,D,MAC(D),m〉 is received by an en-

route node v, node v can check the integrity of D in the same

way as in existing packet filtering schemes [6], [7]. If a packet

is found modified, it is immediately dropped; otherwise, the

following packet is forwarded by v:

〈Pv, D,MAC(D), {Rv,m
′}Kv 〉,

where m′ is constructed the same way from m as in the

scheme to identify packet droppers.

Therefore, by integrating with the existing schemes [6], [7],

the modified packets will be dropped by honest nodes on the

way to the sink. Modified packets dropped by honest nodes

are equivalent to packets dropped at the modifier nodes, which

can be explained by Fig.4. Suppose node A is a compromised

node and it modifies the packets it forwards randomly due

to our deliberate packet encryption and padding techniques.

Suppose nodes C, B and D as well as the downstream nodes

of B and D are honest nodes. Node E detects that some

8

packets that it receives have been modified, and therefore node

E drops the modified packets. Since honest nodes only drop

modified packets and forward unmodified packets correctly,

dropping the modified packets only affects the marks of nodes

whose packets pass through the modifiers. In this example,

only the marks (i.e., “+” or “-”) of node A and its downstream

nodes are affected by node E’s dropping behavior. Therefore,

modified packets dropped by honest nodes are equivalent

to packets dropped at the modifier nodes in terms of the

marks of each node. The sink does not need to differentiate

honest nodes’ behavior of dropping modified packets and

compromised nodes’ behavior of dropping correct packets.

%

&

�

	 $

' (

Fig. 4. Detect Packet Modifiers

4 PERFORMANCE EVALUATION
4.1 Objectives, Metrics, and Methodology
Our packet dropper/modifier identification scheme is simulated

in the ns-2 simulator (version 2.30) to evaluate the effective-

ness and efficiency of the proposed scheme. The objectives

of this evaluation study are four-fold: firstly, testing the effec-

tiveness and efficiency of our scheme in identifying packet

droppers and modifiers; secondly, studying the impacts of

various system parameters (i.e., sensor data reporting interval,

round length, percentage of bad nodes, network scale, presence

of node collusions, etc.) on the performance of our scheme;

thirdly, testing the effectiveness of our scheme under six

different attack models; finally, comparing the proposed global

ranking (GR), stepwise ranking (SR), and hybrid ranking (HR)

algorithms to provide insights on how to choose the ranking

algorithm for different situations.

We measure the performance of our scheme with two

metrics: the detection rate defined as the ratio of successfully

identified bad nodes; the false positive probability defined

as the ratio of mis-accused innocent nodes over all innocent

nodes.

We run simulations in a 400 × 400m2 network with ran-

domly generated network topology. Unless stated otherwise,

we set the percentage of bad nodes to 10%, the network size

to 100 sensor nodes, the per-node packet reporting interval to

3 seconds, and the length of each round to 300 seconds. Also,

when a bad node decides to drop packet in a round, it drops

30% of the packets. All the results are measured and averaged

based on simulations over 50 random networks.

Attack Model: We assume smart attackers selectively com-

promise non-leaf nodes, because compromised non-leaf nodes

can attack the system more effectively than compromised leaf

nodes. Compromised nodes may treat packets generated by

themselves and those by other nodes differently. For their own

packets, a compromised node may (1) drop the packets at each

round, (2) drop the packets in some randomly rounds, or (3)

do not drop the packets all the time. For other nodes’ packets

that it is supposed to forward, a compromised node may (1)

drop the packets in each round, or (2) drop the packets in

some randomly rounds. Consider the combination of dropping

behaviors in the above two categories, we obtain six attack

models in total, namely, attack models 1-1, 1-2, 2-1, 2-2, 3-1

and 3-2, where the first index represents the dropping behavior

towards the packets of the bad node itself and the second index

represents the dropping behavior towards others’ packets. For

example, attack model 1-2 means that own packets are dropped

at each round, while packets of others are dropped at some

selected rounds. This is the easiest to identify because such

attacks will result in the case of + − {−}∗, from which

the bad node can be immediately identified using our node

categorization algorithm. On the other hand, attack model 3-

2 means that own packets are not dropped but packets from

others are dropped at some selected rounds, and experimental

results demonstrate that this attack model is the hardest to deal

with.

To simulate the attack behaviors in ns-2 simulator, we mimic

the attack behaviors by letting each compromised node drop

packets based on a particular attacking model described above.

The compromised nodes are randomly selected beforehand.

After initializing the simulator, each node in the network

has a flag indicating whether it is compromised or not. If a

node is compromised, it will mimic a certain attack behavior;

otherwise, it honestly forwards or sends packets.

In the following subsections, we evaluate the proposed

scheme in Sec. 4.2, and compare the proposed scheme with the

PNM scheme in Sec. 4.3. The implementation of the proposed

scheme on TelosB motes is reported in Sec. 4.4.

4.2 Simulation Results

4.2.1 Evaluation of Ranking Algorithms
Fig 5 shows the detection rate and false positive probability of

our scheme under different attack models. From the figure, we

can see that the stepwise ranking (SR) algorithm achieves a bit

lower detection rate than the other two ranking algorithms in

the first several rounds. But after 8 rounds, the three ranking

algorithms achieve almost the same detection rate. In terms of

false positive probability, the global ranking (GR) algorithm

introduces much higher false positive probability than the other

two, while the other two algorithms have almost the same

number of false positives. This is because the GR algorithm

identifies bad nodes only based on the times that a node is

suspected. Therefore, if an innocent node does not have many

choices to select its parents in different rounds, or many of

its possible parent nodes are actually compromised, the times

that this innocent node is suspected will be large. On the

contrary, the hybrid ranking (HR) and the SR algorithms do

not select a node which is suspected many times when that

node has always been suspected together with some already-

identified bad nodes, which results in less number of false

accusations. Considering both the metrics, the HR is the best

9

ranking algorithm among the three for its high detection rate

and low false positive.

4.2.2 Impact of the Number of Rounds
We study the number of rounds needed to collect information

such that a stable and high detection rate as well as a low

false positive probability can be achieved. We use the HR

algorithm and plot the detection rate under the six attack

models in Fig. 6. From the figure, we can see that almost

all bad nodes can be identified after 8 rounds regardless of

the attack model. Among them, under attack model 1-2, the

bad nodes will be detected quickly after 5 rounds. This is

because a bad node does not drop packets from its downstream

nodes at some intervals, which results in the + − {−}∗ case

and the bad nodes can be identified immediately according to

our proposed rule. On the contrary, under attack model 3-2,

more rounds are needed to achieve a higher detection rate.

In this case, bad nodes are sly and do not drop their self-

generated packets. Consequently, they are only categorized as

suspiciously bad nodes. More rounds are needed before they

are eventually identified.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

D
et

ec
tio

n
R

at
e

Number of Rounds

Attack Model: 1-1

Attack Model: 1-2

Attack Model: 2-1

Attack Model: 2-2

Attack Model: 3-1

Attack Model: 3-2

Fig. 6. Number of Rounds vs. Detection Rate

Since the attack model 3-2 is the most difficult one, we

study the standard deviations of the detection rate and the

false positive probability under this attack model. The data

used to compute the standard deviations are obtained from

the simulations run over 50 random network topologies. The

results are shown in Fig. 7. As we can see, the standard

deviation of detection rate becomes smaller and smaller as the

number of rounds increases. It becomes stable after 8 rounds

at about 0.125. The standard deviation of the false positive

probability is higher than that of detection rate, but it is still

as low as 0.15.

Based on the previous experimental study, attack model

3-2 is the most effective, which renders great challenges

to our proposed scheme. Also, the HR algorithm has the

best performance under all attack models. Therefore, in the

following, we study the impacts of various system parameters

with attack model 3-2 and the HR algorithm.

4.2.3 Impact of Reporting Interval
Given a fixed time length of a round, the longer is the report

interval, the less packets are sent out. When a bad node blindly

drops the forwarding packets, it drops the packets from all

its downstream nodes randomly and hence the percentages

of its downstream nodes’ packets it drops should be similar.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

 0

 0.05

 0.1

 0.15

 0.2

 0.25

D
et

ec
tio

n
R

at
e

Fa
ls

e
P

os
itv

e

Number of Rounds

Mean of Detection Rate

SD of Detection Rate

Mean of False Positive

SD of False Positive

Fig. 7. Mean and Standard Deviation for the HR Method

However, when the sample space is small because of large

reporting interval, the variance of the dropping ratio could

be large, resulting in large false positive probability. This

explains the phenomenon shown in Fig. 8(b), the false positive

probability goes up when the reporting interval increases.

When the number of rounds is small, Fig. 8(a) shows that

the detection rate decreases as the reporting interval increases.

This is because the fewer packets are sent, the less information

is collected for the proposed algorithm to analyze. However,

as the number of detection rounds increases, the detection rate

will approach 100% regardless of reporting interval.

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 3 6 9 12

D
et

ec
tio

n
R

at
e

Varying Reporting Interval (second)

2 Rounds

4 Rounds

6 Rounds

8 Rounds

(a) Detection Rate

 0

 0.05

 0.1

 0.15

 0.2

 3 6 9 12
Fa

ls
e

P
os

iti
ve

Varying Reporting Interval (second)

2 Rounds

4 Rounds

6 Rounds

8 Rounds

(b) False Positive

Fig. 8. Impact of Reporting Interval

4.2.4 Impact of Round Length

Considering the delay for transmitting a packet from a source

node to the sink, the round length affects the number of

packets received at the sink in each round, which in turn

affects the detection performance. Fig. 9 shows the relation

between round length and the performance. It can be seen

that round length mainly affects the false positive probability.

As shown by Fig. 9(b), when the length is 150 seconds, the

false positive probability becomes high though the detection

rate is similar under different round lengths. This is because

when the length of a round is small, there are not enough

packets being generated and sent to the sink and the number

of packets sent by different downstream nodes may not be

dropped at the similar level. For example, when a bad node

drops its forwarding packets, it is supposed to randomly drop

the packets from all its downstream nodes. If the number

of packets is small, it may drop more packets from some

downstream node than others. In this situation, statistical

analysis is not accurate enough and may cause relatively high

10

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

D
et

ec
tio

n
R

at
e

Number of Rounds

HR

SR

GR

(a) Attack Model 1-1

 0

 0.05

 0.1

 0.15

 0.2

 0 2 4 6 8 10

Fa
ls

e
P

os
iti

ve

Number of Rounds

HR

SR

GR

(b) Attack Model 1-1

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

D
et

ec
tio

n
R

at
e

Number of Rounds

HR

SR

GR

(c) Attack Model 1-2

 0

 0.05

 0.1

 0.15

 0.2

 0 2 4 6 8 10

Fa
ls

e
P

os
iti

ve

Number of Rounds

HR

SR

GR

(d) Attack Model 1-2

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

D
et

ec
tio

n
R

at
e

Number of Rounds

HR

SR

GR

(e) Attack Model 2-1

 0

 0.05

 0.1

 0.15

 0.2

 0 2 4 6 8 10

Fa
ls

e
P

os
iti

ve

Number of Rounds

HR

SR

GR

(f) Attack Model 2-1

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

D
et

ec
tio

n
R

at
e

Number of Rounds

HR

SR

GR

(g) Attack Model 2-2

 0

 0.05

 0.1

 0.15

 0.2

 0 2 4 6 8 10

Fa
ls

e
P

os
iti

ve

Number of Rounds

HR

SR

GR

(h) Attack Model 2-2

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

D
et

ec
tio

n
R

at
e

Number of Rounds

HR

SR

GR

(i) Attack Model 3-1

 0

 0.05

 0.1

 0.15

 0.2

 0 2 4 6 8 10

Fa
ls

e
P

os
iti

ve

Number of Rounds

HR

SR

GR

(j) Attack Model 3-1

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

D
et

ec
tio

n
R

at
e

Number of Rounds

HR

SR

GR

(k) Attack Model 3-2

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 2 4 6 8 10

Fa
ls

e
P

os
iti

ve

Number of Rounds

HR

SR

GR

(l) Attack Model 3-2

Fig. 5. Comparing Ranking Strategy under Various Attack Models

false positive. As for the detection rate, it is not sensitive to

round length.

 0

 0.2

 0.4

 0.6

 0.8

 1

 150 300 450 600

D
et

ec
tio

n
R

at
e

Varying Length of a Round (second)

2 Rounds

4 Rounds

6 Rounds

8 Rounds

(a) Detection Rate

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 150 300 450 600

Fa
ls

e
P

os
iti

ve

Varying Length of a Round (second)

2 Rounds

4 Rounds

6 Rounds

8 Rounds

(b) False Positive

Fig. 9. Impact of Round Length

4.2.5 Impact of Percentage of Bad Nodes
Fig. 10 shows the detection performance as the percentage of

bad nodes varies. Generally, the less is the number of bad

nodes, the easier is it to identify these nodes. However, after a

multiple rounds, the detection rates under different percentage

of bad nodes become similar, and all of them achieve very

high values.

4.2.6 Impact of Dropping Probability
Fig. 11 shows the performance sensitivity to bad nodes’

dropping percentage (i.e., the percentage of packets that will be

dropped if a bad node decides to drop packets in a round). We

vary the dropping probability between 20% and 80%. From

Fig. 11, we can see the all the three ranking algorithms have

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 2 4 6 8 10

D
et

ec
tio

n
R

at
e

Number of Rounds

2% bad nodes

6% bad nodes

10% bad nodes

14% bad nodes

(a) Detection Rate

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 2 4 6 8 10

Fa
ls

e
P

os
iti

ve

Number of Rounds

2% bad nodes

6% bad nodes

10% bad nodes

14% bad nodes

(b) False Positive

Fig. 10. Impact of Percentage of Bad Nodes

similar sensitivity to the dropping probability. In addition, with

a high dropping probability, all the three algorithms achieve

a higher detection rate in the early rounds, which means they

can detect bad nodes quicker, and can achieve a lower false

positive generally. This is because frequent misbehaviors can

quickly distinguish bad nodes from innocent nodes.

4.2.7 Impact of Thresholds
(1)Threshold for Differentiating “+” Nodes and “-” Nodes.
In order to tolerate incidental packet loss, we use a threshold

θ when marking each node with “+” or “-”. Fig. 12 shows

the impact of this threshold on the detection performance. As

depicted in Fig. 12(a), the larger is the threshold, the lower is

the detection rate. This is because, fewer nodes will be marked

as “-” as the threshold increases; hence, a part of bad nodes

may escape from being detected.

As shown in Fig. 12(b), when the threshold increases, the

false positive probability increases first and then decreases

11

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

D
et

ec
tio

n
R

at
e

Number of Rounds

HR

SR

GR

(a) Dropping Probability=20%

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 2 4 6 8 10

Fa
ls

e
P

os
iti

ve

Number of Rounds

HR

SR

GR

(b) Dropping Probability=20%

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

D
et

ec
tio

n
R

at
e

Number of Rounds

HR

SR

GR

(c) Dropping Probability=80%

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 2 4 6 8 10

Fa
ls

e
P

os
iti

ve

Number of Rounds

HR

SR

GR

(d) Dropping Probability=80%

Fig. 11. Comparing Ranking Strategy under Various
Dropping Probability

after the threshold reaches a certain value (turning point).

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

D
et

ec
tio

n
R

at
e

Threshold

2 Rounds

4 Rounds

6 Rounds

8 Rounds

(a) Detection Rate

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.2 0.4 0.6 0.8 1

Fa
ls

e
P

os
iti

ve

Threshold

2 Rounds

4 Rounds

6 Rounds

8 Rounds

(b) False Positive

Fig. 12. Threshold for Differentiating “+” Nodes and “-”
Nodes

(2)Threshold for Identifying Nodes with Dropping Rates.
Considering that incidental collisions may cause two nodes to

have different dropping rates, we use a threshold to differen-

tiate the case that two nodes really have different dropping

ratios from the case that the difference in their dropping

ratios are caused by incidental packet loss. Fig. 13 shows

the impact of this threshold on the detection rate and the

false positive. We can see that, the larger is the threshold, the

lower are the detection rate and the false positive probability.

This is because, the difference in dropping ratios between two

nodes is an important parameter for our ranking algorithms

to differentiate the behaviors between parent-child nodes. If

the threshold is too large, our algorithms cannot find the

abnormal behaviors that are solely reflected on the dropping

ratio difference. If the threshold is too small, the false positive

probability will be increased, as shown in Fig. 13(b).

4.2.8 Impact of Node Collusion
We study the following three collusion cases shown in Fig. 3.

Case 1: Nodes A, B, C and D are all compromised nodes:

every node behaves normally without dropping their own

packets and forwarding packets. In this attack model, these

compromised nodes collude to protect themselves.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

D
et

ec
tio

n
R

at
e

Threshold

2 Rounds

4 Rounds

6 Rounds

8 Rounds

(a) Detection Rate

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.05 0.1 0.15 0.2 0.25 0.3

Fa
ls

e
P

os
iti

ve

Threshold

2 Rounds

4 Rounds

6 Rounds

8 Rounds

(b) False Positive

Fig. 13. Threshold for Identifying Nodes with Different
Dropping Rates

Case 2: Node A is a good node and more than one of its

child nodes are compromised: the compromised nodes drop

their own packets and/or packets from their children. In this

case, these compromised nodes collude to frame the parent

node A.

Case 3: Node A is a good node but nodes B and E are not.

Both bad nodes B and E drop packets of their own and/or

from their downstream nodes. In this case, compromised nodes

B and E collude to frame node A

We randomly generate the above collusion scenarios and

conduct a set of simulations to study the impact of the

extended rules discussed in Sec. 3.4

As shown by Fig. 14, under collusion attacks, the GR

algorithm still has the highest detection rate and the largest

false positive. The performance of SR and HR are similar to

each other. And after we run our proposed scheme for 10
rounds, the detection rate and the false positive probability

tend to be stable. The false positive probability of the GR

algorithm has a noticeable increase from round 1 to round 2,

then it goes down and becomes stable This is because, the

information about suspicious nodes obtained from round 1

and round 2 is very limited, and the difference between the

suspected times of bad nodes and those of innocent nodes is

not big enough, which causes the increase of false positive

when the GR is adopted. However, after more rounds, the

accumulative suspected times of bad nodes becomes larger

and larger, and the accumulative suspected times of innocent

nodes increase much slower than those of bad nodes. Note that,

each node randomly chooses its parents in a round based on the

mutual agreement with the sink, an innocent node may choose

a parent which is bad at a round, and choose innocent parents

at some other rounds; hence, the accumulative times of being

suspected for innocent nodes are generally fewer than those

for bad nodes. In summary, the trend observed in the collusion

scenarios is similar to that in the non-collusion scenarios.

We also compare the detection rates under the collusion

scenarios and the non-collusion scenarios, the results of which

are shown in Fig. 15. The HR algorithm is used. We can see

that, the detection performance degrades under the collusion

scenarios. But the detection rate is still as high as 80% and

a low false positive probability is maintained. The reason for

lower detection rate can be explained as follows: When there

are collusions, multiple colluding bad nodes and one or more

innocent nodes are put into a single tuple. However, if there

is no collusion, generally there is only one bad node in a

12

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

D
et

ec
tio

n
R

at
e

Number of Rounds

HR

SR

GR

(a) Detection Rate

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 2 4 6 8 10

Fa
ls

e
P

os
iti

ve

Number of Rounds

HR

SR

GR

(b) False Positive

Fig. 14. Comparison of Ranking Strategy with Collusion

tuple. Hence, the bad nodes’ overall times of being suspected

is reduced when there are collusions, which degrades the

efficiency in identifying bad nodes. In fact, if a set of bad

nodes collude together most of the time, only one of these

nodes may be identified. To deal with this issue, after one bad

node is identified, it should be removed from the system and

thus it cannot protect other bad nodes from being identified

through continuously colluding with them.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

D
et

ec
tio

n
R

at
e

Number of Rounds

Without Collusion

With Collusion

(a) Detection Rate

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 2 4 6 8 10

Fa
ls

e
P

os
iti

ve

Number of Rounds

Without Collusion

With Collusion

(b) False Positive

Fig. 15. Comparison between collusion and non-collusion

4.3 Performance Comparison
To identify packet modifiers and droppers, it has been pro-

posed to add nested MACs to address this problem [20],

[25]. Next, we compare our proposed scheme with the PNM

scheme [20] in terms of detection performance and commu-

nication overhead.

4.3.1 Detection Rate and False Positive
Fig. 16 shows the overall detection performance of the PNM

scheme [20] based on the same network topology and con-

figuration of compromised nodes as in Fig. 7. The highest

detection rate it can achieve is about 75%, and the lowest

false positive is around 10%. However, as shown by Fig. 7, our

proposed scheme can achieve 96% detection rate meanwhile

maintain the false positive as low as 1%. This is because the

nested MAC approach can only identify the problematic links,

i.e., it will catch a compromised node as well as its one-hop

neighbor node. For a path containing several compromised

nodes, it can only identify the first problematic link near the

sink.

Fig. 17(a) compares the detection performance between our

proposed scheme and the PNM scheme in more details. We

can see that our proposed scheme achieves better detection

performance after three rounds. Also, the false positive of

our proposed scheme is much lower than that of the PNM

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 0

 0.2

 0.4

 0.6

 0.8

 1

D
et

ec
tio

n
R

at
e

Fa
ls

e
P

os
itv

e

Probability of Attaching MACs

Mean of Detection Rate

SD of Detection Rate

Mean of False Positive

SD of False Positive

Fig. 16. Performance of the PNM scheme

scheme, as shown by Fig. 17(b). This is because our proposed

scheme utilizes the observed wide variety of node behaviors

and makes a good heuristic decision on telling which nodes

are compromised, while the PNM scheme is only capable to

identify the problematic links, and cannot tell which node is

the compromised node within a problematic link.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10

D
et

ec
tio

n
R

at
e

Number of Rounds

Proposed Scheme

PNM Scheme, p=0.1

PNM Scheme, p=0.5

PNM Scheme, p=1.0

(a) Detection Rate

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 2 4 6 8 10

Fa
ls

e
P

os
itv

e

Number of Rounds

Proposed Scheme

PNM Scheme, p=0.1

PNM Scheme, p=0.5

PNM Scheme, p=1.0

SD-Proposed Scheme

SD-PNM Scheme

(b) False Positive

Fig. 17. Comparison between collusion and non-collusion

4.3.2 Communication Overhead
We also compare the communication overhead between the

PNM scheme and our proposed scheme. In our proposed

scheme, only fields Ru and padu,1 are the extra bits, because

other fields are necessary even when security issues are not

considered (for example, Pu and u are the destination and

source of the packet, Cp is the sequence number used by the

sink to find out if some packets are lost, etc.). The size of Ru is

determined by Np, which is the maximum number of parents

that each sensor node should record at the topology estab-

lishment phase. As to be seen later, parameter Np determines

the range that the tree structure can be reshaped; specially, if

the total number of nodes in the tree is n, potentially there

are Nn
p different tree topologies that can be used to test the

behaviors of nodes. Therefore, its value should be reasonably

large. It is set to 8 in our simulations. The size of padu,1
is determined by both Np and h, which is the height of the

routing tree. Though the structure of the routing tree changes

dynamically from round to round, the level of each node in the

tree remains the same. This is because each node only records

nodes which are one hop closer to the sink as its candidate

parent nodes, and each node dynamically changes its parent

node from the recorded candidates in the tree reshaping phase.

Therefore, the communication overhead per node is fixed in

our proposed scheme.

In the PNM scheme, the extra communication overhead is

the marks added for tracing back to the problematic links. In

13

our simulation, we adopt the RC5 primitives to compute the

MAC and the block size is configured to 64 bits. Fig. 18 shows

the comparison of extra communication overhead per node.

As we can see, the per node communication overhead of the

PNM scheme increases as the probability of attaching marks

increases. On the other hand, the per node communication

overhead of our proposed scheme increases as the number

of rounds increases. The proposed scheme outperforms the

PNM scheme in terms of communication overhead when the

probability of attaching marks is greater than or equal to 0.5.

Meanwhile, the detection performance of our proposed scheme

also outperforms the PNM scheme, which is shown by Fig. 17.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 2 4 6 8 10

E
xt

ra
 O

ve
rh

ea
d

pe
r N

od
e

(B
yt

es
)

Number of Rounds

Proposed Scheme

PNM Scheme, p=0.1

PNM Scheme, p=0.3

PNM Scheme, p=0.5

Fig. 18. Comparison of Communication Overhead

4.4 Implementation of Packet Sending and Forward-
ing
We implemented the proposed packet sending and forwarding

scheme on TelosB motes, which are widely used resource-

constrained sensor motes [26]. Each TelosB mote has a CPU

running at 8MHz, a RAM of 10KB size, and a flash storage of

1MB size. RC5 encryption primitives are used in our imple-

mentation. The block size is set to 64 bits. The code running

on TelosB consumes 624 bytes of RAM and 15, 216 bytes of

ROM. The encryption time on sensor motes depends on the

length of encrypted data. In our proposed scheme, the part that

needs encryption is {Ru, u, Cp MOD Ns, D, padu,0}Ku . Its

length is decided by several parameters discussed in Sec. 3.1.2.

We report the computation overhead in Table 1 by varying the

length of data. Other parameters, namely, Np, Ns, and Lid are

set to 8, 1024, and 10 bits respectively.

TABLE 1
Computational cost for sensor to forward a packet (ms)

Data Length (Bytes) 12 20 28 36 44 52
Computational Time 120 178 237 296 354 412

From the results shown in Table 1, the computational over-

head is quit low, and it is offordable by resource-constrained

sensor networks.

5 RELATED WORK
The approaches for detecting packet dropping attacks can

be categorized as three classes: multi-path forwarding ap-

proach, neighbor monitoring approach and acknowledgement

approach. Multi-path forwarding [4], [5] is a widely adopted

countermeasure to mitigate packet droppers, which is based

on delivering redundant packets along multiple paths. Another

approach is to exploit the monitoring mechanism [10], [13],

[14], [16], [17], [18], [19], [27]. The watchdog method was

originally proposed to mitigate routing misbehavior in mobile

ad hoc networks [10]. It is then adopted to identify packet

droppers in wireless sensor network [13], [27], [28]. When

the watchdog mechanism is deployed, each node monitors

its neighborhood promiscuously to collect the firsthand in-

formation on its neighbor nodes. A variety of reputation

systems have been designed by exchanging each node’s first-

hand observations, which are further used to quantify node’s

reputation [16], [17], [18], [19]. Based on the monitoring

mechanism, the intrusion detection systems are proposed

in [15], [29]. However, the watchdog method requires nodes

to buffer the packets and operate in the promiscuous mode,

the storage overhead and energy consumption may not be

affordable for sensor nodes. In addition, this mechanism relies

on the bidirectional communication links, it may not be

effective when directional antennas are used [30]. Particularly,

this approach cannot be applied when a node does not know

the expected output of its next hop since the node has no

way to find a match for buffered packets and overheard

packets. Note that, this scenario is not rare, for example, the

packets may be processed, and then encrypted by the next

hop node in many applications that security is required. Since

the watchdog is a critical component of reputation systems,

the limitations of the watchdog mechanism can also limit the

reputation system. Besides, a reputation system itself may

become the attacking target. It may either be vulnerable to

bad mouthing attack or false praise attack [30]. The third

approach to deal with packet dropping attack is the multi-

hop acknowledgment technique [31], [32], [33]. By obtaining

responses from intermediate nodes, alarms and detection of

selective forwarding attacks can be conducted. To deal with

packet modifiers, most of existing countermeasures [6], [7],

[8], [9] are to filter modified messages within a certain number

of hops so that energy will not be wasted to transmit modified

messages.

The effectiveness to detect malicious packet droppers and

modifiers is limited without identifying them and excluding

them from the network. Researchers hence have proposed

schemes to localize and identify packet droppers, one approach

is the acknowledgement based scheme [24], [25], [34] for

identifying the problematic communication links. It can de-

terministically localize links of malicious nodes if every node

reports ACK using onion report. However, this incurs large

communication and storage overhead for sensor networks. The

probabilistic ACK approaches are then proposed in [24], [25],

which seek tradeoffs among detection rate, communication

overhead and storage overhead. However, these approaches

assume the packet sources are trustable, which may not be

valid in sensor networks. As in sensor networks, base station

typically is the only one we can trust. Furthermore, these

schemes require to set up pairwise keys among regular sensor

nodes so as to verify the authenticity of ACK packets, which

may cause considerable overhead for key management in

14

sensor networks. Ye et al. [20] proposed a scheme called PNM

for identifying packet modifiers probabilistically. However,

the PNM scheme cannot be used together with the false

packet filtering schemes [6], [7], [8], [9], because the filtering

schemes will drop the modified packets which should be used

by the PNM scheme as evidences to infer packet modifiers.

This degrades the efficiency of deploying the PNM scheme.

6 CONCLUSION

We propose a simple yet effective scheme to identify misbe-

having forwarders that drop or modify packets. Each packet is

encrypted and padded so as to hide the source of the packet.

The packet mark, a small number of extra bits, is added in each

packet such that the sink can recover the source of the packet

and then figure out the dropping ratio associated with every

sensor node. The routing tree structure dynamically changes in

each round so that behaviors of sensor nodes can be observed

in a large variety of scenarios. Finally, most of the bad nodes

can be identified by our heuristic ranking algorithms with

small false positive. Extensive analysis, simulations and imple-

mentation have been conducted and verified the effectiveness

of the proposed scheme.

ACKNOWLEDGMENTS

This work is partially supported by NSF under grants CNS-

0716744, CNS-0627354, CNS-0834593 and CNS-0831874,

and by ONR under grant N000140910748.

REFERENCES

[1] H. Chan and A. Perrig, “Security and privacy in sensor networks,”
Computer, vol. 36, no. 10, 2003.

[2] C. Karlof and D. Wagner, “Secure routing in wireless sensor networks:
attacks and countermeasures,” in the First IEEE International Workshop
on Sensor Network Protocols and Applications, 2003.

[3] V. Bhuse, A. Gupta, and L. Lilien, “Dpdsn: Detection of packet-dropping
attacks for wireless sensor networks,” in the Fourth Trusted Internet
Workshop, 2005.

[4] M. Kefayati, H. R. Rabiee, S. G. Miremadi, and A. Khonsari, “Misbe-
havior resilient multi-path data transmission in mobile ad-hoc networks,”
in ACM SASN, 2006.

[5] R. Mavropodi, P. Kotzanikolaou, and C. Douligeris, “Secmr - a secure
multipath routing protocol for ad hoc networks,” Ad Hoc Networks, vol.
5, no. 1, 2007.

[6] F. Ye, H. Luo, S. Lu, and L. Zhang, “Statistical En-route Filtering of
Injected False Data in Sensor Networks,” in IEEE INFOCOM, 2004.

[7] S. Zhu, S. Setia, S. Jajodia, and P. Ning, “An Interleaved Hop-by-Hop
Authentication Scheme for Filtering False Data in Sensor Networks,” in
IEEE S&P, 2004.

[8] H. Yang, F. Ye, Y. Yuan, S. Lu, and W. Arbaugh, “Toward Resilient
Security in Wireless Sensor Networks,” in ACM MobiHoc, 2005.

[9] Z. Yu and Y. Guan, “A Dynamic En-route Scheme for Filtering False
Data in Wireless Sensor Networks,” in IEEE INFOCOM, 2006.

[10] S. Marti, T. Giuli, K. Lai, and M. Baker, “Mitigating routing misbehavior
in mobile ad hoc networks,” in ACM MobiCom, 2000.

[11] M. Just, E. Kranakis, and T. Wan, “Resisting malicious packet dropping
in wireless ad hoc networks,” in ADHOCNOW, 2003, vol. 2856.

[12] R. Roman, J. Zhou, and J. Lopez, “Applying intrusion detection systems
to wireless sensor networks,” in IEEE CCNC, 2006.

[13] S. Lee and Y. Choi, “A resilient packet-forwarding scheme against
maliciously packet-dropping nodes in sensor networks,” in ACM SASN,
2006.

[14] I. Khalil and S. Bagchi, “Mispar: mitigating stealthy packet dropping in
locally-monitored multi-hop wireless ad hoc networks,” in SecureComm,
2008.

[15] I. Krontiris, T. Giannetsos, and T. Dimitriou, “Lidea: a distributed
lightweight intrusion detection architecture for sensor networks,” in
SecureComm, 2008.

[16] S. Ganeriwal, L. K. Balzano, and M. B. Srivastava, “Reputation-based
framework for high integrity sensor networks,” ACM Transactions on
Sensor Networks (TOSN), vol. 4, no. 3, 2008.

[17] W. Li, A. Joshi, and T. Finin, “Coping with node misbehaviors in ad hoc
networks: A multi-dimensional trust management approach,” in IEEE
Mobile Data Management, 2010.

[18] P. Michiardi and R. Molva, “Core: a collaborative reputation mechanism
to enforce node cooperation in mobile ad hoc networks,” in CMS, 2002.

[19] S. Buchegger and J. Le Boudec, “Performance analysis of the confidant
protocol,” in ACM MobiHoc, 2002.

[20] F. Ye, H. Yang, and Z. Liu, “Catching Moles in Sensor Networks,” in
IEEE ICDCS, 2007.

[21] Q. Li and D. Rus, “Global clock synchronization in sensor networks,”
in IEEE INFOCOM, 2004.

[22] K. Sun, P. Ning, C. Wang, A. Liu, and Y. Zhou, “Tinysersync: Secure
and resilient time synchronization in wireless sensor networks,” in ACM
CCS, 2006.

[23] H. Song, S. Zhu, and G. Cao, “Attack-resilient time synchronization for
wireless sensor networks,” Ad Hoc Networks, vol. 5, no. 1, 2007.

[24] B. Xiao, B. Yu, and C. Gao, “Chemas: Identify suspect nodes in selective
forwarding attacks,” Journal of Parallel and Distributed Computing, vol.
67, no. 11, 2007.

[25] X. Zhang, A. Jain, and A. Perrig, “Packet-dropping adversary identifi-
cation for data plane security,” in ACM CONEXT, 2008.

[26] Crossbow, “Wireless sensor networks,” http://www.xbow.com/Products/
Wireless Sensor Networks.htm.

[27] T. H. Hai and E. N. Huh, “Detecting selective forwarding attacks in
wireless sensor networks using two-hops neighbor knowledge,” in IEEE
NCA, 2008.

[28] F. Liu, X. Cheng, and D. Chen, “Insider Attacker Detection in Wireless
Sensor Networks,” in IEEE INFOCOM, 2007.

[29] K. Ioannis, T. Dimitriou, and F. C. Freiling, “Towards intrusion detection
in wireless sensor networks,” in EuropeanWireless Conference, 2007.

[30] A. Srinivasan, J. Teitelbaum, H. Liang, J. Wu, and M. Cardei, “Rep-
utation and trust-based systems for ad hoc and sensor networks,” in
Algorithms and Protocols for Wireless Ad Hoc and Sensor Networks,.
2008, Wiley & Sons.

[31] J. M. Mccune, E. Shi, A. Perrig, and M. K. Reiter, “Detection of denial-
of-message attacks on sensor network broadcasts,” in IEEE S&P, 2005.

[32] B. Yu and B. Xiao, “Detecting selective forwarding attacks in wireless
sensor networks,” in IPDPS, 2006.

[33] K. Liu, J. Deng, P. K. Varshney, and K. Balakrishnan, “An
acknowledgment-based approach for the detection of routing misbehav-
ior in manets,” Mobile Computing, IEEE Transactions on, vol. 6, no. 5,
2007.

[34] B. Barak, S. Goldberg, and D. Xiao, “Protocols and lower bounds for
failure localization in the internet,” in Eurocrypt, 2008.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

